skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Haomiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precise control of aperture dimensions is crucial in adsorptive separations of hydrocarbons, as it directly affects key parameters such as selectivity, capacity, diffusion, and recyclability. The development of metal-organic frameworks (MOFs) has enabled the fine-tuning of local pore environments to address important hydrocarbon separations. However, customizing aperture geometry to tune kinetic separation performance remains challenging. Here, we deploy a mixed-linker synthesis strategy, combining long and short linkers on fcu net Zr-MOFs with equilateral triangular apertures to construct isoreticular multivariate MOFs, NU-415 and NU-416, with tailored isosceles triangular apertures suitable for the separation of hexane isomers. Sorption, liquid batch separa-tion and X-ray diffraction measurements demonstrate significantly improved selectivity, capacity, stability and recyclability of NU-415 and NU-416 compared with Zr-muconate and MOF-801. Notably, both NU-415 and NU-416 achieve uptake capacities of 2.2 mmol g-1 in 1 minute with a n-hexane to 2,2-dimethylbutane selectivity over 200 in equimolar ternary mixture at ambient conditions, comparable to leading reported materials. Mechanistic studies confirm that separation performance is predominantly governed by significant kinetic differences rather than by thermodynamics. The successful customization of aperture geometry not only enables superior linear to monobranched hexane selectivity in NU-415, but also demonstrates the mixed-linker synthesis strategy as a promising solution for precise and predictable pore architecture control in MOFs. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  2. Metal-organic frameworks (MOFs) have been examined extensively for CO2 capture, and the influence of water co-adsorption on these processes is particularly relevant, as CO2 capture generally occurs in humid gas streams. To investi-gate CO2/H2O co-adsorption, binary adsorption isotherms of CO2 and H2O were measured on MOF-808-TFA (TFA = trifluoro-acetic acid). When water was pre-adsorbed on MOF-808-TFA, and a subsequent CO2 adsorption isotherm was measured, the CO2 adsorption was slightly reduced, as expected. However, when CO2 was adsorbed first and then an H2O adsorption iso-therm was measured, no significant H2O adsorption capacity was observed. The near complete loss of water adsorption ca-pacity was observed even when only a trace amount of CO2 was pre-adsorbed. The results show that unexpected, non-state function adsorption equilibria can result from dynamic MOF behaviors and defect sites, which may lead to counterintuitive adsorption data compared to traditional materials. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  3. Global access to drinking water shrinks yearly, yet the atmosphere—our largest sustainable water source—remains largely untapped. Metal–organic frameworks (MOFs), a tunable class of crystalline porous materials, are promising candidates for atmospheric water harvesting. The channel-pore MOF STA-16(Co) stands out due to its robust phosphonate-based structure, which provides high stability and excellent water uptake. However, STA-16(Co) suffers from slow water uptake kinetics. To address this limitation, we introduced defects into STA-16(Co) by selectively removing linkers through treatment with nitrilotriacetic acid, significantly improving water diffusion kinetics. The defective MOFs demonstrate markedly faster water saturation rates—delivering ~50% more water in a 40-minute cycle—while maintaining the same uptake capacity and isothermal behavior as pristine STA-16(Co). Solid-state nuclear magnetic resonance analysis confirms that localized defects enhance efficiency without altering the overall pore geometry. This study presents a straightforward and generalizable strategy to optimize water sorption in channel-based MOFs. 
    more » « less
    Free, publicly-accessible full text available June 2, 2026
  4. Metal-organic frameworks (MOFs) with tunable structures and unique host-guest chemistry have emerged as promising candidates for conductive materials. However, the tunability of conductivity and porosity in conductive MOFs and their interrelationship still lack a systematic study. Herein, we report the synthesis of a series of 3D copper MOFs (NU-4000 to NU-4003) using a triphenylene-based hexatopic carboxylate linker. By modulating the ratio of mixed solvents, distinct structural topologies and π-π stacking arrangements were achieved, resulting in electrical conductivity ranging from insulators (˂ 10-6 S/cm) to semiconductors (10-8 ~ 102 S/cm). Among them, NU-4003 features continuous π-π stacking and exhibits a conductivity of 1.7 × 10-6 S/cm. To further enhance conductivity, we encapsulated C60, a strong electron acceptor, within the circular channels of NU-4003, resulting in a remarkable conductivity increase to 140 S/cm with approximately 100% pore occupancy. Even at lower C60 loadings that leave 54% of the pore volume remaining accessible, the conductivity remains exceptionally high at 104 S/cm. This represents an eight-order magnitude enhancement and positions NU-4003-C60 as one of the most conductive 3D MOFs reported to date. This work integrates two charge transport pathways (through-space and electron donor and acceptor) into a single MOF host-guest material, achieving a significant enhancement in conductivity. This study demonstrates the potential of combining host-guest chemistry and π-π stacking to design conductive MOFs with permanent porosity maintained, providing a blueprint for the development of next-generation materials for electronic and energy-related applications. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  5. The quest for understanding the structure-property correlation in porous materials has remained a persistent focus across various research domains, particularly within the sorption realm. Molecular metal oxide clusters, owing to their precisely tunable atomic structures and long-range order, exhibit significant potential as versatile platforms for sorption investigations. This study presents a series of isostructural Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their gas sorption behavior. Notably, Ti8Ce2-BA (where BA denotes benzoic acid) manifests a distinctive twostep profile during CO2 adsorption, accompanied by a hysteresis loop. This observation marks a pioneering instance within the metal oxide cluster field. Of particular intrigue, the presence of unsaturated Ce(Ⅳ) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in-situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating geometrically "flexible" metal-oxo clusters and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields, particularly in CO2 gas capture and gas-phase catalysis, and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships. 
    more » « less
  6. CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as post-combustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyl-triazolate linkers are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve CO2 uptake in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH – a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo (GCMC) simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications. 
    more » « less
  7. Electrochemical stability and delocalization of states critically impact the functions and practical applications of electronically active polymers. Incorporation of a ladder-type constitution into these polymers represents a promising strategy to enhance the aforementioned properties from a fundamental structural perspective. A series of ladder-type polyaniline-analogous polymers are designed as models to test this hypothesis and are synthesized through a facile and scalable route. Chemical and electrochemical interconversions between the fully oxidized pernigraniline state and the fully reduced leucoemeraldine state are both achieved in a highly reversible and robust manner. The protonated pernigraniline form of the ladder polymer exhibits unprecedented electrochemical stability under highly acidic and oxidative conditions, enabling the access of a near-infrared light-absorbing material with extended polaron delocalization in the solid-state. An electrochromic device composed of this ladder polymer shows distinct switching between UV- and near-infrared-absorbing states with a remarkable cyclability, meanwhile tolerating a wide operating window of 4 volts. Taken together, these results demonstrate the principle of employing a ladder-type backbone constitution to impart superior electrochemical properties into electronically active polymers. 
    more » « less
  8. TCNQ (7,7,8,8-tetracyanoquinodimethane) anion-radical derivatives were used to fine tune the magnetic properties of the [Co II (Fctp) 2 ] 2+ (Fctp = 4′-(2-ferrocenyl)-2,2′:6′2′′-terpyridine) cation in the solid state. The cocrystallization of [Co II (Fctp) 2 ] 2+ with TCNQ˙ − yielded the two pseudo-polymorphic products [Co II (Fctp) 2 ] (TCNQ) 2 ( 1 ) and [Co II (Fctp) 2 ] (TCNQ) 2 ·MeCN ( 2 ) whereas the analogous reaction with TCNQF˙ − (TCNQF = 2-fluoro-7,7,8,8-tetracyanoquinodimethane) exclusively yielded [Co II (Fctp) 2 ] (TCNQF) 2 ·MeCN ( 3 ). Compound 1 exhibits slow relaxation of magnetization under an applied DC field with U eff = 19.1 K and τ 0 = 9.8 × 10 −6 s. Compounds 2 and 3 are isostructural but exhibit different spin-crossover behavior with transition temperatures of T 1/2 = 336 K and 226 K, respectively. Investigations of the solid state structures by DFT calculations indicate that the differences in magnetic properties of the cationic moiety, [Co II (Fctp) 2 ] 2+ , are induced by supramolecular interactions between [Co II (Fctp) 2 ] 2+ and tunable TCNQ˙ − /TCNQF˙ − anion-radical derivatives. 
    more » « less